فلوريدا الرياضيات للكلية النجاح يوفر منهج الرياضيات تركز على تطوير إتقان المهارات التي تم تحديدها باعتبارها حاسمة لاستعداد ما بعد الثانوي في الرياضيات. يتم محاذاة هذا الفصل الدراسي الاختياري واحد مع فلوريداس الكفاءات الجاهزية الثانوية في الرياضيات ويستهدف الطلاب الذين يطلب منهم استكمال تعليم إضافي على أساس أدائها على اختبار الاستعداد التعليم بعد الثانوي (بيرت). وتشمل موضوعات الدورة مراجعة لوظائف المفاهيم الجبرية وتسلسل نظم المعادلات متعددة الحدود العوملة التعبيرات التربيعية التعبيرات العقلانية وتحليل البيانات. خلال الدورة، يتم تزويد الطلاب مع أدلة تدوين السقالات، ودعا أوراق الدراسة، فضلا عن أنشطة ما بعد الدراسة الفحص التي توفر لهم الفرصة لصقل مهاراتهم الحسابية من خلال العمل من خلال منخفضة المخاطر، مشكلة 10 سؤال قبل والانتقال إلى التقييم الرسمي. تساعد التقييمات التكوينية الطلاب على فهم مجالات الضعف وتحسين الأداء، في حين أن التقييمات التلخيصية تبين التقدم المحرز وتنمية المهارات. يتم محاذاة المحتوى على وجه التحديد مع فلوريدا الكفاءات الاستعداد الثانوي. المدة: فصل دراسي واحد الوحدة 1: استعراض المفاهيم الجبرية الدرس 1: أنواع الأرقام دراسة: أنواع الأرقام تعرف على أنواع مختلفة من الأرقام الحقيقية، بما في ذلك الكسور العشرية والنسب المئوية. مقارنة الأرقام من أنواع وأشكال مختلفة باستخدام سطر رقم. المدة: 0 ساعة 50 دقيقة التهديف: 0 نقطة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة التهديف: 0 نقطة مسابقة: أنواع الأرقام خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التسجيل: 20 نقطة مسابقة: أرقام عقلانية وغير عقلانية خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 2: العمليات على خط رقم دراسة: العمليات على خط رقم استكشاف باستخدام خط رقم لتقييم التعبيرات العددية. المدة: 0 ساعة 40 دقيقة الدرس 3: التكامل والعمليات الدراسة: الأعداد الصحيحة والعمليات استخدام خصائص العمليات وترتيب العمليات لتقييم التعبيرات التي تتضمن الأعداد الصحيحة. تعرف على العمليات العكسية والقيمة المطلقة وكيفية تمثيل القيم المطلقة على سطر رقم. الاعتراف واكتساب فهم أساسي من الأسس. المدة: 0 ساعة 50 دقيقة التهديف: 0 نقطة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة التهديف: 0 نقطة مسابقة: خصائص العمليات خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة مسابقة: ترتيب العمليات خذ مسابقة للتحقق من فهمك لما تعلمته. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة الدرس 4: الكسور، العشرية، والنسب دراسة: الكسور، الكسور العشرية، و بيرسنتس مراجعة المصطلحات جزء (بما في ذلك البسط والمقام) أداء العمليات مع الكسور الحقيقية (عقلانية وغير عقلانية) أرقام الكسور المكافئة رئيس الوزراء والأرقام والعوامل أقل المضاعفات المشتركة المتبادلة وتحويل الكسور إلى الكسور العشرية والنسب المئوية. المدة: 0 ساعة 50 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة كويز: ليك دينوميناتورس خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 20 دقيقة التهديف: 16 نقطة مسابقة: الكسور المكافئة خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة الدرس 5: العمليات مع النتائج دراسة: العمليات مع الأساتذة تعرف على تقييم التعبيرات مع الأسس باستخدام ترتيب العمليات. المدة: 0 ساعة 50 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: أوبيراتيونس ويث إكسينتس تأخذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 20 دقيقة التهديف: 20 نقطة مسابقة: العمليات مع الراديكاليين اتخاذ مسابقة للتحقق من فهمك لما تعلمته. المدة: 0 ساعة 20 دقيقة التهديف: 20 نقطة مسابقة: تدوين العلمي خذ مسابقة لفحص فهمك لما تعلمته. المدة: 0 ساعة 20 دقيقة التهديف: 20 نقطة مسابقة: الأسس في الهندسة اتخاذ مسابقة للتحقق من فهمك لما تعلمته. المدة: 0 ساعة 10 دقائق التهديف: 10 نقاط الدرس 6: المتغيرات وحل المشاكل الدراسة: المتغيرات وحل المشكلات مراجعة ما هو المتغير، وكيفية تشكيل واستخدام تعابير متغيرة لحل المشاكل. المدة: 0 ساعة 50 دقيقة التهديف: 0 نقطة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة التهديف: 0 بوينتس مسابقة: تعبيرات متغيرة قم بإجراء مسابقة للتحقق من فهمك لما تعلمته. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة مسابقة: الجمل الرياضية خذ مسابقة للتحقق من فهمك لما تعلمته. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة الدرس 7: حل مع إضافة، سوبتراكتيون، مولتيبليكاتيون، وتقسيم الدراسة: حل مع الجمع والطرح والضرب والقسم مراجعة كيفية عزل المتغيرات وحل المعادلات البسيطة وعدم المساواة باستخدام خصائص الإضافة ، الطرح، الضرب والقسمة. تحديد مجموعات الحلول لأوجه عدم المساواة باستخدام خط رقم. المدة: 0 ساعة 30 دقيقة التهديف: 0 نقطة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: أوسينغ أوبيراتيونس تو سولف إكاليتيز خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة مسابقة: استخدام العمليات لحل أوجه عدم المساواة قم بإجراء مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 8: حل المعادلات الخطية المتعددة دراسة: حل المعادلات الخطية متعددة الخطوات مراجعة جمع مثل المصطلحات، وذلك باستخدام كل من أديتيونسوبتراكتيون و مولتيبليكاتيونديفيسيون وتحديد المعادلات التي هي أبدا أو دائما صحيح. المدة: 0 ساعة 50 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة كويز: باسيك كولكتينغ أوف ليك تيرمز خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 16 نقطة مسابقة: جمع المتقدم لشروط مثل اتخاذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 16 نقطة مسابقة: العثور على عدد من مجموعات الحل خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 16 نقطة الدرس 9: التعقيدات المتعددة والمكونات دراسة: عدم المساواة المتعددة والمركبة تطبيق التقنيات التي تعلمتها حتى الآن في هذه الوحدة لحل أوجه عدم المساواة متعددة المراحل والمركبة. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة كويز: مولتيستيب أند كومبوند إنكاليتيز خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 10: النسبة المئوية والعمولة الدراسة: النسب المئوية والعمولة فهم كيفية استخدام النسب المئوية لحساب عمولة الدفع مع الصيغة C برن. المدة: 0 ساعة 45 دقيقة تسجيل النقاط: 0 نقاط فحص: مشاكل الممارسة تحقق من فهمك للدرس. المدة: 0 ساعة 20 دقيقة التهديف: 0 بوينتس مسابقة: النسب المئوية و اللجنة خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 20 دقيقة التهديف: 20 نقطة الدرس 11: دراسة ضريبة المبيعات: ضريبة المبيعات تعلم كيفية حساب ضريبة المبيعات على أساس النسب المئوية. النظر في مختلف الضرائب مبيعات الدولة وممارسة حساب المجاميع مع الأخذ في الاعتبار البنود المعفاة. المدة: 0 ساعة 45 دقيقة تسجيل النقاط: 0 نقاط فحص: مشاكل الممارسة تحقق من فهمك للدرس. المدة: 0 ساعة 20 دقيقة التهديف: 0 نقطة مسابقة: ضريبة المبيعات خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 20 دقيقة التهديف: 20 نقطة الدرس 12: مراجعة مفاهيم الجبر اختبار التفاف (كس): مراجعة مفاهيم الجبر إجراء اختبار على الكمبيوتر للتأكد من ما تعلمته في هذه الوحدة. المدة: ساعة واحدة التهديف: 75 نقطة الدرس 13: التشخيص التشخيصي: مراجعة مفاهيم الجبر إجراء اختبار تشخيصي من شأنها أن تخلق خطة دراسة على أساس إجاباتك. المدة: 0 ساعة 40 دقيقة التهديف: 42 نقطة الوحدة 2: راتيوس، معدلات، ومعدلات الدرس 1: التقدير والمقياس الدراسة: التقدير والمقياس تعرف على حجم الأعداد، ترتيب الحجم، صلاحيات 10، وتقدير أعداد كبيرة، وفيرمي مشاكل. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: إستيماشيون أند سكيل خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 2: الدقة في القياس الدراسة: الدقة في القياس تعرف على الدقة والدقة والأرقام الهامة والضرب والإضافة. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: الدقة والدقة خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة مسابقة: شخصيات مهمة خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 3: تطبيقات القياس دراسة: تطبيقات القياس تعرف على تطبيقات الوحدات، وتحويل الوحدات، والتقدير والحجم، ودرجة الحجم والدقة والدقة والأرقام الهامة. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: تطبيقات القياس اتخاذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 4: تحويلات القياس الدراسة: تحويلات القياس استخدام التحويلات بين أنظمة القياس لحل المشاكل في مواقف العالم الحقيقي. المدة: 0 ساعة 50 دقيقة التهديف: 0 نقطة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة التهديف: 0 نقطة مسابقة: قياس التحويلات إجراء مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة الدرس 5: مقدمة ل راتيوس دراسة: مقدمة إلى النسب تعرف على كتابة الكسور كنسب، وتبسيط النسب، وطرق أخرى لكتابة النسب، وترتيب الأرقام في نسبة. ممارسة هذه المهارات باستخدام مشاكل العينة. المدة: 0 ساعة 30 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: مقدمة إلى نسب خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 20 دقيقة التهديف: 10 نقاط الدرس 6: نسب الدراسة: نسب استخدام النسب لتحديد النسب وحل المشاكل التي تنطوي على نسب. المدة: 0 ساعة 30 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: نسب تأخذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 20 دقيقة التهديف: 10 نقاط الدرس 7: أسعار دراسة: معدلات استخدام نسب لتحديد معدلات وحل مشاكل معدل. المدة: 0 ساعة 30 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: الأسعار خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 20 دقيقة تسجيل النقاط: 8 نقاط الدرس 8: راتيوس، معدلات، والمربعات اختبار التفاف (كس): النسب والمعدلات والنسب إجراء اختبار سجل الكمبيوتر للتحقق ما تعلمته في هذه الوحدة. المدة: ساعة واحدة التهديف: 75 نقطة الدرس 9: التشخيص التشخيصي: النسب والمعدلات والنسب إجراء اختبار تشخيصي من شأنها أن تخلق خطة دراسة بناء على إجاباتك. المدة: 0 ساعة 40 دقيقة التهديف: 40 نقطة الوحدة 3: الدرس الوظيفي 1: عندما ينفق شيء واحد على دراسة أخرى: عندما يعتمد شيء واحد على آخر تعرف على تعريف واستكشف أمثلة من الوظائف والكميات التي تعتمد على كميات أخرى. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: عندما شيء واحد يعتمد على آخر خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 2: وظيفة التدوين دراسة: وظيفة تدوين تعرف على واستكشاف أمثلة من تدوين وظيفة. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: ترجمة إلى وظيفة تدوين تأخذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة مسابقة: وظيفة تدوين لمبالغ محددة إجراء مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة مسابقة: التسمية وظائف اتخاذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 3: إنبوت-أوتبوت ماشينس الدراسة: آلات الإدخال والمخرجات تعرف على مجال ومدى الوظائف، ومخططات الإدخال والمخرجات، وذلك باستخدام قواعد للوظائف، والتعبيرات الرياضية في الوظائف. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: استخدام وظائف اتخاذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 4: الوظائف والجداول دراسة: الوظائف والجداول تعرف على استخدام جداول المدخلات والمخرجات لتحديد أو وصف الوظائف، وتقدير قيم الوظائف، وإيجاد قاعدة وظائف على الطاولة. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: وظائف و الجداول خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 5: وظائف و غرافس الدراسة: الوظائف والرسوم البيانية تعرف على استخدام الرسوم البيانية الشريطية، والرسوم البيانية الدائرية، والرسوم البيانية الخط لوصف أو تحديد الوظائف. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: وظائف والرسوم البيانية خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 6: وظائف و فورمولاس دراسة: وظائف وصيغ تعلم عن استخدام القواعد والصيغ الجبرية لوصف وتحديد الوظائف. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: الوظائف و الصيغ خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدراسة: حل مشكلة الربح في تطبيق في العالم الحقيقي، استخدم الجداول والقواعد وطريقة تقدير القيم لكتابة معادلة تعبر عن وظيفة. حل المعادلة والتعبير عن الإخراج في الرسم البياني الخطي. المدة: 0 ساعة 40 دقيقة الدرس 7: كم عدد المخرجات الدراسة: عدد المخرجات استعراض الوظائف وما يجعلها مستقلة مستقلة والمتغيرات التابعة المدخلات والمخرجات وأمثلة من العلاقات التي قد لا تكون وظيفية. المدة: 0 ساعة 40 دقيقة مسابقة: كم عدد المخرجات خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 8: الوظائف والعلاقات الدراسة: الوظائف والعلاقات تعرف على استخدام مخططات رسم الخرائط أمرت أزواج على الرسوم البيانية الفرق بين رسم الخرائط التخطيطي للوظائف والعلاقات اختبار خط العمودي ومعادلات وظائف والعلاقات . المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: رسم الخرائط وظائف والعلاقات خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة مسابقة: تحديد الوظائف والعلاقات خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 9: النطاق والنطاق الدراسة: المجال والمدى تعرف على النطاق والمدى على رسم تخطيطي للموقع، وتقدير النطاق ومجموعة من الوظائف، وحساب نطاق الدالة من المعادلة. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 20 دقيقة مسابقة: المجال والمدى اتخاذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 15 دقيقة التهديف: 12 نقطة الدرس 10: وظائف اختبار التفاف (كس): وظائف إجراء اختبار سجل الكمبيوتر للتحقق ما تعلمته في هذه الوحدة. المدة: ساعة واحدة التهديف: 75 نقطة الدرس 11: التشخيص التشخيص: وظائف إجراء اختبار تشخيصي من شأنها أن تخلق خطة دراسة بناء على إجاباتك. المدة: 0 ساعة 40 دقيقة التهديف: 39 نقطة الوحدة 4: المعادلات الخطية الدرس 1: تحليل البيانات دراسة: تحليل البيانات تعرف على استخدام نظام الإحداثيات الديكارتي للعثور على أنماط في نقاط رسم البيانات على متغير يعتمد على الرسم البياني ومستقل تحويل بيانات الجدول إلى أمر أزواج واستخدام أفضل خط صالح لتقدير قيمة نقاط البيانات. المدة: 0 ساعة 50 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: تحليل البيانات خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 18 نقطة الدرس 2: أنماط وخطوط دراسة: أنماط وخطوط استكشاف مجموعة متنوعة من العلاقات الوظيفية التي تنطوي على الاختلاف المباشر. الحصول على مقدمة للخطوط من خلال فحص العلاقة بين نمط النقاط على الرسم البياني للخط ومعادلة الخطوط. العثور على معادلة خط يعتمد على إحداثيات نقاطه، ورسم المعادلة الخطية من مخطط حلولها. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: فيندينغ إكاتيونس أوف لينس أس سولوتيونس خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 3: سلوب الدراسة: المنحدر تعرف على قياس المنحدر، وارتفاع، وتشغيل صيغة المنحدر صفر الصفر ومنحدر غير محدد وقياس معدل التغير لمتغير تابع. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 25 دقيقة مسابقة: كومبوتينغ سلوب خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 24 نقطة مسابقة: حالات خاصة من المنحدر خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 4: معادلة الانحدار المنحدر لدراسة الخط: معادلة الانحدار المنحدر للخط تعرف على استخدام المنحدر و y - intercept للعثور على معادلة الانحدار المنحدر للخط. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: فيندينغ سلوب-إنتيرسيبت المعادلات من خطوط خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 22 نقطة الدرس 5: نقطة الصعود المعادلة من دراسة خط: نقطة المنحدر معادلة خط تعرف على استخدام المنحدر ونقطة للعثور على y - خط من خط اشتقاق واستخدام نقطة المعادلة - slope والشكل القياسي للمعادلة. إكمال مشكلة تطبيق تنطوي على كتلة في فصل الربيع. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: إيجاد المعادلات من خطوط خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 22 نقطة الدرس 6: خصائص الخطوط الدراسة: خصائص الخطوط تستمد المعلومات حول الخطوط في أشكالها المختلفة. المدة: 0 ساعة 40 دقيقة الممارسة: خصائص خطوط تقديم عملك لمجموعة من 20 مشاكل الممارسة. المدة: 0 ساعة 30 دقيقة التهديف: 25 نقطة الدرس 7: خطوط الموازية والعادية الدراسة: خطوط متوازية وعمودية تعرف على الخطوط المتوازية والعمودي والعلاقات بين منحدراتهم. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: المنحدرات من خطوط متوازية وعمودي اتخاذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 8: العوائق الخطية دراسة: عدم المساواة الخطية تعرف على إيجاد وحلول الرسوم البيانية مجموعات لعدم المساواة الخطية. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: الرسوم البيانية من عدم المساواة اتخاذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 18 نقطة الدراسة: حل مشكلة الإضاءة تعرف على تطبيق أوجه عدم المساواة الخطية من أجل حل مشكلة العالم الحقيقي لاستخدام الطاقة، مقارنة المصابيح المتوهجة والمصابيح الفلورية. المدة: 0 ساعة 40 دقيقة الدرس 9: المعادلات الخطية اختبار التفاف (كس): المعادلات الخطية خذ اختبارا حاسوبيا للتحقق من ما تعلمته في هذه الوحدة. المدة: ساعة واحدة التهديف: 75 نقطة الدرس 10: التشخيص التشخيصي: المعادلات الخطية إجراء اختبار تشخيصي من شأنها أن تخلق خطة دراسة بناء على إجاباتك. المدة: 0 ساعة 40 دقيقة التهديف: 40 نقطة الوحدة 5: تحويلات الوظائف الدرس 1: الرسم البياني والمناورة Y مكس B دراسة: الرسوم البيانية والتلاعب y مكس b تعلم، وصف، والتنبؤ كيف تغيير قيم m و b في المنحدر - معادلة اعتراض خط يغير الرسم البياني للمعادلة. المدة: 0 ساعة 40 دقيقة التهديف: 0 نقاط فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة التهديف: 0 نقطة مسابقة: الرسوم البيانية والتلاعب ذ مكس ب خوض مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة الدرس 2: وظائف شيفتنغ دراسة: تحويل وظائف تعرف على تحويل الرسوم البيانية من الوظائف أوبدون واليسار عن طريق تغيير إحداثيات كل زوج أمر. تعرف على تغيير معادلة الدالة لتحويل الرسم البياني عموديا أو أفقيا وحول الجمع بين التحولات الرأسية والأفقية. المدة: 0 ساعة 50 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: تحويل وظائف عموديا خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 18 نقطة مسابقة: تحويل وظائف أفقيا خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 16 نقطة مسابقة: وظائف التحول عموديا وأفقيا خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 18 نقطة الدرس 3: وظائف التمدد عموديا دراسة: توسيع الوظائف عموديا تعرف على التمدد الرأسي أو ضغط الرسم البياني للدالة 8217s بضربه من خلال التقليب الثابت للرسم البياني بضربه بواسطة ثابت سلبي والجمع بين الامتدادات العمودية الرأسية أو التحولات الأفقية. المدة: 0 ساعة 50 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: تمدد وظائف عموديا خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة الدراسة: حل مشكلة القذف بالكرة تعرف على تحويل وتمديد الرسوم البيانية واستخدام الحوافز وكيفية تطبيق هذه الأساليب لمشكلة القذف في العالم الحقيقي. تعرف على استخدام السرعة المتوسطة كتقدير للسرعة اللحظية. المدة: 0 ساعة 50 دقيقة الدرس 4: تحويلات وظائف الوالدين دراسة: تحويلات وظائف الوالدين تعرف على كيفية إجراء التحولات العمودية، والتحولات الأفقية، وامتدادات الرأسية والضغط، والمدد الأفقية والضغط، وأي مزيج من هذه التحولات على وظائف الوالدين. المدة: 0 ساعة 50 دقيقة التهديف: 0 نقطة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة التهديف: 0 بوينتس مسابقة: تحولات وظائف الوالدين خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 5: وظائف تحويل اختبار التفاف (كس): وظيفة تحويلات إجراء اختبار سجل الكمبيوتر للتحقق ما تعلمته في هذه الوحدة. المدة: 1 ساعة التهديف: 75 نقطة الدرس 6: التشخيص التشخيصي: تحويلات وظيفة إجراء اختبار تشخيصي من شأنها أن تخلق خطة دراسة على أساس إجاباتك. المدة: 0 ساعة 40 دقيقة التهديف: 42 نقطة الوحدة 6: أنظمة المعادلات الدرس 1: صياغة أنظمة المعادلات الدراسة: صياغة أنظمة المعادلات تعلم كيفية صياغة المعادلات الرياضية من مشاكل الكلمات التي يتم وصفها بواسطة نظام من معادلتين أو عدم المساواة. المدة: 0 ساعة 40 دقيقة التهديف: 0 نقاط فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة التهديف: 0 بوينتس مسابقة: صياغة أنظمة المعادلات خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 20 نقطة الدرس 2: نظامين متغيرين: الرسم البياني الدراسة: نظامين متغيرين: الرسوم البيانية تعرف على أنظمة الرسوم البيانية من معادلتين خطيتين، وحين متى ولماذا نظم المعادلات الخطية ليس لها حلول، الحل، أو العديد من الحلول بلا حدود. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: حل مع الرسوم البيانية خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 3: نظامين متغيرين: البديل دراسة: نظامين متغيرين: تبديل تعلم استبدال متغير بقيمة أو تعادل متساوي من أجل تحويل معادلة اثنين متغير إلى واحد معادلة - Variable. تعلم عن استخدام طريقة الاستبدال لحل نظم المعادلات الخطية وعن تطبيق هذه الطريقة لمشكلة العالم الحقيقي من الأرنب اصطياد سلحفاة. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: حل مع تبديل أخذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 4: نظامين متغيرين: القضاء على الدراسة: نظامين متغيرين: القضاء استراتيجيات استنباطية للقضاء على مصطلح متغير عند حل نظام المعادلات الخطية. ممارسة إضافة أو طرح نفس القيمة من كلا الجانبين من المعادلة من أجل القضاء على المصطلحات الاستراتيجية. تغيير المعادلات من شكل غير قياسي إلى شكل قياسي بحيث تكون أسهل للعمل مع والتكيف مع طريقة القضاء. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: حل مع القضاء 8212 نموذج قياسي إجراء مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة مسابقة: حل مع القضاء 8212 نموذج غير قياسي إجراء مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 26 نقطة الدرس 5: أنظمة المعادلات اختبار التفاف (كس): نظم المعادلات خذ اختبارا حاسوبيا للتحقق من ما تعلمته في هذه الوحدة. المدة: 1 ساعة التهديف: 75 نقطة الدرس 6: التشخيص التشخيصي: نظم المعادلات إجراء اختبار تشخيصي من شأنها أن تخلق خطة دراسة على أساس إجاباتك. المدة: 0 ساعة 40 دقيقة التهديف: 13 نقطة الوحدة 7: بولينوميالز الدرس 1: ما هو دراسة بولينوميال: ما هو متعدد الحدود تعرف على تعريفات أحادية، متعددو الحدود، الثوابت، المصطلحات، المعاملات، الحدين، ترينوميالز، ودرجة. تعرف على إيجاد درجات متعددة الحدود. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: درجات متعددو الحدود خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة مسابقة: درجات متعددو الحدود (متقدم) خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة الدرس 2: إضافة ودمج البولينيات دراسة: جمع وطرح متعددو الحدود تعرف على استخدام البلاط لتمثيل، إضافة وطرح متعددو الحدود وطرح وطرح متعددو الحدود من خلال جمع مثل المصطلحات. تطبيق هذه الأساليب لمشكلة في العالم الحقيقي من شراء ستريتلامبس. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: متعدد الحدود إضافة مع البلاط خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة مسابقة: متعدد الحدود إضافة إجراء مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 28 نقطة مسابقة: متعدد الحدود الطرح خوض مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 16 نقطة الدرس 3: متعدد الحدود بينوميالز دراسة: الحدين الضرب تعلم عن استخدام البلاط لضرب الحدين الخطية باستخدام خاصية التوزيع لتبسيط والعثور على منتج ثنائي الحدين و فويل (الأول، الخارجي، الماضي) طريقة العثور على المنتجات. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: العثور على منتجات الحدين خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 28 نقطة مسابقة: العثور على منتج من اثنين من الحدين أخذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 30 نقطة مسابقة: طريقة فويل إجراء مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 16 نقطة الدرس 4: تعدد الزوجات دراسة: مضاعفات متعدد الحدود تعرف على استخدام جدول لمضاعفات متعددو الحدود باستخدام خاصية التوزيع وضرب متعددو الحدود عن طريق ترتيبها عموديا. المدة: 0 ساعة 40 دقيقة فحص: مشاكل الممارسة إكمال مجموعة من المشاكل الممارسة لصقل مهارات الحساب الخاص بك. المدة: 0 ساعة 30 دقيقة مسابقة: متعدد الحدود الضرب خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 22 نقطة مسابقة: الضرب متعدد الحدود (متقدم) خذ مسابقة لتقييم فهمك للمادة. المدة: 0 ساعة 25 دقيقة التهديف: 28 نقطة الدرس 5: غرافينغ بولينوميالز دراسة: متعددو الحدود البيانية تعرف على الرسوم البيانية كصور من مجموعات الحل. Use a table to find and graph solutions to polynomial equations. Explore why these graphs are always continuous curves. Graph higher-degree polynomial equations by plotting their corresponding points and identifying their parts, such as extreme values (maximum and minimum) and roots. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Finding Extreme Values Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 24 points Quiz: Finding Roots of Graphs Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 22 points Study: The Stereo Problem Apply the method of graphing polynomials in order to solve the real-world problem of finding the relationship between the price of stereos and sales figures. Duration: 0 hrs 40 mins LESSON 6: POLYNOMIALS WRAP-UP Test (CS): Polynomials Take a computer-scored test to check what you have learned in this unit. Duration: 1 hr Scoring: 75 points LESSON 7: DIAGNOSTIC Diagnostic: Polynomials Take a diagnostic test that will create a study plan based on your answers. Duration: 0 hrs 40 mins Scoring: 23 points UNIT 8: FACTORING QUADRATIC EXPRESSIONS LESSON 1: WHY FACTOR Study: Why Factor Learn about composite numbers, reducible polynomials, and the zero product rule. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Factoring Polynomials Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points LESSON 2: FACTORING AND GRAPHING Study: Factoring and Graphing Learn about the connection between roots and linear factors using roots on graphs of polynomials to find linear factors and polynomials with no linear factors or repeated linear factors. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Factoring by Graphing Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 28 points Quiz: Factoring by Graphing (Advanced) Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 22 points LESSON 3: GROUPING Study: Grouping Learn about polynomials with terms that have a common factor applying the distributive property in reverse to factor out common factors and finding the greatest common factor. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Factoring by Grouping Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: Finding GCFs of Polynomials Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 16 points LESSON 4: FACTORING X 2 BX C Study: Factoring x 2 bx c Learn about factoring quadratic trinomials with leading coefficients of 1 rules for finding the constant term and coefficient of the x-term using a table to factor trinomials and diagramming signs while factoring trinomials. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Binomial Factors of Trinomials Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: Factoring Trinomials Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points LESSON 5: FACTORING AX 2 BX C Study: Factoring ax 2 bx c Learn about factoring trinomials with leading coefficients other than 1 factoring out a leading coefficient of -1 how values of factors relate to values of a trinomial finding factor pairs of leading coefficients and constant terms and finding signs in factors of trinomials with a leading coefficient different from 1. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Factoring Trinomials (Basic) Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: Factoring Trinomials (Advanced) Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points LESSON 6: SPECIAL CASES Study: Special Cases Learn about recognizing and factoring a difference of squares perfect-square trinomials sums and differences of two cubes. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Factoring a Difference of Squares Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: Factoring Perfect Square Trinomials Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 20 points Quiz: Sum or Difference of Two Cubes Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points LESSON 7: SOLVING WITH ROOTS AND POWERS Study: Solving with Roots and Powers Review solving equations with square roots and absolute values. Review solving inequalities with square roots and absolute values, including by using a number line. Duration: 0 hrs 50 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Solving with Roots and Powers Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 16 points Quiz: Solving Inequalities with Roots and Powers Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 16 points Quiz: Finding Solution Sets with Inequalities Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 16 points LESSON 8: SOLVING QUADRATIC EQUATIONS Study: Solving Quadratic Equations Learn about solving quadratic equations using factoring and the zero product rule manipulating a quadratic equation into standard form and solving quadratic equations with perfect-square trinomials. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Factoring with the Zero Product Rule Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 28 points Quiz: Converting Quadratics to Standard Form Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 28 points Quiz: Quadratics with Perfect Square Trinomials Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 16 points LESSON 9: COMPLETING THE SQUARE Study: Completing the Square Learn about solving quadratic equations without perfect-square trinomials completing the square using tiles and completing the square when the coefficients are more complicated. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Completing the Square Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 24 points Quiz: Completing the Square (Advanced) Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 24 points LESSON 10: THE QUADRATIC FORMULA Study: The Quadratic Formula Learn about types of equations that can be solved using the quadratic formula complex numbers discriminants and finding roots (including complex roots) using the quadratic formula. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Complex Numbers and Discriminants Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: The Quadratic Formula Take a quiz to assess your understanding of the material. Duration: 0 hrs 30 mins Scoring: 30 points LESSON 11: GRAPHS OF QUADRATIC FUNCTIONS Study: Graphs of Quadratic Functions Relate factors of a quadratic function to the graph of a parabola and its corresponding x - intercepts. Locate the vertex of a quadratic function graphically and algebraically. Use the discriminant of the quadratic formula to identify the number and types of solutions to a given quadratic equation, as well as to visualize its corresponding graph. Duration: 0 hrs 50 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Quiz: Graphs of Quadratic Functions Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: Working with the Discriminant Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 20 points LESSON 12: FACTORING QUADRATIC EXPRESSIONS WRAP-UP Test (CS): Factoring Quadratic Expressions Take a computer-scored test to check what you have learned in this unit. Duration: 1 hr Scoring: 75 points LESSON 13: DIAGNOSTIC Diagnostic: Factoring Quadratic Expressions Take a diagnostic test that will create a study plan based on your answers. Duration: 0 hrs 40 mins Scoring: 40 points UNIT 9: RATIONAL AND RADICAL EXPRESSIONS LESSON 1: RATIONAL EXPRESSIONS Study: Rational Expressions Learn about finding the value of a rational expression and about undefined rational expressions. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Rational Expressions Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 16 points LESSON 2: SIMPLIFYING RATIONAL EXPRESSIONS Study: Simplifying Rational Expressions Practice finding and dividing out common factors in numerators and denominators of rational expressions. Explore the crucial difference between common factors and terms. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Simplifying Rational Expressions Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 16 points LESSON 3: MULTIPLYING AND DIVIDING RATIONAL EXPRESSIONS Study: Multiplying and Dividing Rational Expressions Review multiplying and dividing numerical fractions, multiplying rational expressions, dividing rational expressions, and simplifying the results. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Multiplying Rational Expressions Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 18 points Quiz: Dividing Rational Expressions Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 18 points LESSON 4: ADDING AND SUBTRACTING RATIONAL EXPRESSIONS Study: Adding and Subtracting Rational Expressions Review adding and subtracting numerical fractions adding and subtracting rational expressions with like denominators finding least common denominators multiples of rational expressions and adding and subtracting rational expressions with unlike denominators. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Adding and Subtracting Rational Expressions Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 22 points LESSON 5: RATIONAL EQUATIONS Study: Rational Equations Learn how to solve simple rational equations. Duration: 0 hrs 50 mins Scoring: 0 points Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 30 mins Scoring: 0 points Quiz: Rational Equations Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 20 points LESSON 6: BASICS OF RADICALS Study: Basics of Radicals Learn the definition of radical expression. Explore simplifying the product and quotient of radicals and simplifying individual radicals. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Simplifying Products of Radicals Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: Simplifying Quotients of Radicals Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points LESSON 7: MULTIPLYING AND DIVIDING RADICALS Study: Multiplying and Dividing Radicals Learn about multiplying and dividing radical expressions that include variables and about using the FOIL (first, inner, outer, last) method to simplify radical expressions. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Multiplying Radicals Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Quiz: Dividing Radicals Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 28 points LESSON 8: ADDING AND SUBTRACTING RADICALS Study: Adding and Subtracting Radicals Learn about adding and subtracting radical expressions by combining like terms and about simplifying terms to get the same radicand. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Adding and Subtracting Radicals Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points LESSON 9: RATIONALIZING DENOMINATORS Study: Rationalizing Denominators Learn about rationalizing a denominator in order to simplify a fraction with a radical expression in the denominator. Learn about multiplying by the conjugate of a denominator. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Rationalizing Denominators Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points LESSON 10: SOLVING RADICAL EQUATIONS Study: Solving Radical Equations Learn how to solve equations with radical expressions by isolating the radical and squaring both sides. Duration: 0 hrs 40 mins Checkup: Practice Problems Complete a set of practice problems to hone your calculation skills. Duration: 0 hrs 25 mins Quiz: Solving Radical Equations Take a quiz to assess your understanding of the material. Duration: 0 hrs 25 mins Scoring: 30 points Study: Applications of Radical Equations Explore case studies in order to practice methods of solving radical equations in applied settings. Duration: 0 hrs 40 mins LESSON 11: RATIONAL AND RADICAL EXPRESSIONS WRAP-UP Test (CS): Rational and Radical Expressions Take a computer-scored test to check what you have learned in this unit. Duration: 1 hr Scoring: 75 points LESSON 12: DIAGNOSTIC Diagnostic: Rational and Radical Expressions Take a diagnostic test that will create a study plan based on your answers. Duration: 0 hrs 40 mins Scoring: 49 points UNIT 10: DATA ANALYSIS LESSON 1: CATEGORICAL DATA Study: Categorical Data Learn how to construct and interpret bar charts, pie graphs, and comparative bar charts. Duration: 0 hrs 40 mins Scoring: 0 points Checkup: Practice Problems Complete a set of practice problems to check your understanding of the lesson. Duration: 0 hrs 25 mins Scoring: 0 points Quiz: Categorical Data Take a quiz to assess your understanding of the material. Duration: 0 hrs 20 mins Scoring: 20 points LESSON 2: MEASURES OF CENTER Study: Measures of Center Learn how to calculate and interpret measures of center, such as mean, median, and mode. Duration: 0 hrs 40 mins Scoring: 0 points Checkup: Practice Problems Complete a set of practice problems to check your understanding of the lesson. Duration: 0 hrs 25 mins Scoring: 0 points Quiz: Measures of Center Take a quiz to assess your understanding of the material. Duration: 0 hrs 20 mins Scoring: 20 points LESSON 3: BOX PLOTS Study: Box Plots Learn how to calculate and interpret box plots, comparative box plots, and modified box plots. Duration: 0 hrs 40 mins Scoring: 0 points Checkup: Practice Problems Complete a set of practice problems to check your understanding of the lesson. Duration: 0 hrs 25 mins Scoring: 0 points Quiz: Box Plots Take a quiz to assess your understanding of the material. Duration: 0 hrs 20 mins Scoring: 20 points LESSON 4: SCATTERPLOTS Study: Scatterplots Learn how to construct and interpret scatterplots. Duration: 0 hrs 40 mins Scoring: 0 points Checkup: Practice Problems Complete a set of practice problems to check your understanding of the lesson. Duration: 0 hrs 25 mins Scoring: 0 points Quiz: Scatterplots Take a quiz to assess your understanding of the material. Duration: 0 hrs 20 mins Scoring: 20 points LESSON 5: LINEAR REGRESSION Study: Linear Regression Learn how to calculate a linear regression equation, interpret the slope and intercept in context, and identify influential points (compared to large residuals). Duration: 0 hrs 40 mins Scoring: 0 points Checkup: Practice Problems Complete a set of practice problems to check your understanding of the lesson. Duration: 0 hrs 25 mins Scoring: 0 points Quiz: Linear Regression Take a quiz to assess your understanding of the material. Duration: 0 hrs 20 mins Scoring: 20 points LESSON 6: DATA ANALYSIS WRAP-UP Test (CS): Data Analysis Take a computer-scored test to check what you have learned in this unit. Duration: 1 hr Scoring: 75 points LESSON 7: DIAGNOSTIC Diagnostic: Data Analysis Take a diagnostic test that will create a study plan based on your answers. Duration: 0 hrs 40 mins Scoring: 34 points UNIT 11: FLORIDA MATH FOR COLLEGE SUCCESS EXAM LESSON 1: FLORIDA MATH FOR COLLEGE SUCCESS EXAM Exam: Florida Math for College Success Exam Take a computer-scored exam to demonstrate your mastery of concepts and skills covered in Florida Math for College Success. Duration: 1 hr Scoring: 200 pointsCalculusApp This is a great Calculus app, with it you can calculate any derivative of any function, you can calculate single, double or triple integrals, you can draw slope fields and you can calculate partial fractions Please check it out Listinfo Version 3 This program calculates Left, Right, Trapezoidal, Midpoint, and Simpsons Riemann sums using coordinates of points (x, y). It will calculate the sums even if the subintervals defined by consecutive points are not of equal length The program can graph a StatPlot with each of the rectangles, trapezoids, or parabolas used to calculate the respective sum. This program is great for AP Calculus AB BC where students need to calculate Riemann sums and use MVT, IVT, or BOTH, or Rolles Theorem based on a table. If MVT, IVT, or both need to be used to find a value of f, f-prime, or demonstrate that f-double prime is negative, zero, or positive, the program will display the set of points that need to be used with the theorems along with which theorems to use. Please read the included documentation in the zip file for formal proofreasoning. The program also calculates the slopes between consecutive points, and the sign of the second derivative using calculated slopes. All information is stored into lists X, Y, SLOPE, CONCV, LRECT, RRECT, TRAP, and MIDPT for the user to view after the program ends by going to the Stat - Edit. If AP Calculus ABBC table exercises involving Riemann Sums, MVT, and IVT are giving you a hard time, you should download this program. Try it out on 2003 AB Form B 3 Part (d), AB 2005 3 Part (d), AB 2007 3 Parts (a) and (b), AB 2008 2 Part (c), AB 2004 Form B 3 Part (b) All About Calculus: Year I If youre taking AP Calculus AB or any other form of year one calculus, this program will save you HOURS (literally) on homework, tests, and other assignments. Using a very easy-to-use interface, it provides a huge range of features, including a tangent line finder, an approximate differentiator, a Riemann sum calculator (in all five of the generally used forms), an approximate integrator, an average value finder, an arc length calculator, a FAST slope field generator, an even faster Eulers method calculator with a scrollable table, and a similarly scrollable Newtons method calculator. All of these are arranged into just six step-by-step functions, many of which use a convenient and intuitive mathprint format. Three animated screenshots and a readme file included. Check them out youll be amazed. Runge-Kutta 4 Method Uses the Runge-Kutta 4-slope method to numerically approximate the solutions of first-order differential equations. Also stores data from intermediate steps in lists to aid in showing work. Recursive prgmRECURSIV represents numerically and graphically recursively-defined sequences. 1,2,3. n is stored to L1, while Asub(k1) as a function of Asubk is stored to L2. The sequence is plotted against its term number (in a graph situation), though reading off L2 for the sequence is more handy (especially for busy-work). The graphs are interesting, however the graph of Asub(k1)3Asubk, for example, increases like a geometric sequence with a common ratio r3. Sequence SEQUENCE is designed to numerically and graphically represent the sequences that result from all types of functions, especially those whose values only carry meaning in the domain of the natural numbers: factorials, series, alternating series, etc. f(n) is evaluated for 1,2,3. n (the domain automatically stored to L1) stored, and displayed as L2. ZoomStat displays the (L1,L2) alongside Y1. Approximate Integration Approximate Integration is used when it is impossible or very difficult to find the exact value of a definate integral. This program uses 5 different techniques, Left Endpoint approximation, Right Endpoint approximation, Midpoint Rule, Trapezodial Rule, and Simpsons Rules, to find aprroximate values for the definate integral. Slope Field Program This program draws the slope field for a given differential equation of the form y f(x, y). It will also superimpose user-specified solution curves of the form y F(x) on the slope field. Strengths of program: (1) Optimized for speed (e. g. slope field is saved and then re-used rather than re-generated when solution curves are graphed). (2) Flexible (e. g. settings for the window variables and slope-field lattice are user-specified and independent of each other). (3) Easy data entry and navigation (e. g. cancellation reminders are on data-entry screens). Comprehensive Slope Fields This program will graph the slope field for a given dydx equation, allow you to modify the viewing window, display the slope at a given (x, y) point, and overlay the original (antiderivative) equation over the slope field, so you can see the relationship better. Useful for Calculus AB, BC, and up. Unlike many other slope field programs, this one: has a variable frequency for how oftenlarge the slope marks are (set as a grid on the xy axis tick marks), overcomes divide by zero errors encountered with equations like - xy, is speed-optimized, and comes with a variety of options. Adaptive Runge-Kutta Program This TI 83 program is an adaptation of the algorithm used by the TI 85, TI 86, and TI 89 calculators for graphing solutions to differential equations. The underlying algorithm is an adaptive third-order Runge-Kutta algorithm using coefficients due to Bogacki and Shampine. Please send suggestions, comments, criticism, and bug reports to thornahawkyahoo. (Originally at unitedti. org) Integral Area Approximation This program takes a given function, evaluates it over the interval, with the set number of intervals, and evaluates at either the left, middle, right, or trapezoidal integration points, and returns the value. Less work than the fnInt function, and also easier to use. Integral X This program is capable of finding the area under and between curves. You can choose from numerous methods of finding the area including left, right and middle, trapezoidal, solids of revolution and standard integration. The program is easy to use, and understand, if you know the terminology. Can find definite integrals, regardless if equation is unknown, as long as co-ordinates are given. Definitely worth having this integration program, as this program accounts for ANYTHING that there could be on the exam. Differentiate Differentiate in dutch. With listing how you can calculate this sum. (Not only answer, what the most programs does). So, great for math If you know how to program, you can change it into english. (Simple to use) Simpsons Rule This program prompts the user for A (The lower limit of integration), B (The upper limit of integration), N (The given number of subintervals), and Function (The function for which the program will use Simpsons Rule to approximate the integral. The program stores the answer in the variable X for reference by the user after the program is finished. Remember the Simpsons Rule is only valid when n is even. The program will stop if n is odd. Point of Inflection Finder Given a function and a couple bounds, it will find the point of inflection for it (if there is one) on your very own TI-83 SUMeng It is for doing sums: LEFTHAND-SUM, RIGHTHAND-SUM, TRAPEZ, MIDPOINT and SIMPSONS. Enter function in Y1 and start the program. Enter lower limit, upperlimit and the sub-divisions. Then pres enter and you will see LEFTHAND-SUM, RIGHTHAND-SUM and the TRAPEZ-sum. Pres enter again and you will see MIDPOINT and SIMPSONS-sum. Its as easy as that. NB: when you pick ex. N4 the result will in all the sums be N4, but in the SIMPSONS-sum N will be 8. (In the SIMPSONS-sum -- N2N) Area Under a Curve This program uses the Romberg algorithm to find area under a curve. I have tested other programs for speed and accuracy but found mine to be superior in both. The user can set accuracy to a set number a decimal places. It also shows an estimate of the answer as it zeros in on the exact answer. As far time goes, here are some times for the 84 silver editon and 9 decimal place accuracy in radian mode. Yes, 9 decimal places. e(-x) from 0x-50x takes 25 seconds. sin(x), 0 x-10pi x takes 1 second. cos(x32)2sin(x) from 0-10 takes 25 seconds. Precalculus This program is a pre-calculus program that will cover all your algebra 2 review and all the trigonometry funcions including sine, cosine, tangent, secant, cosecant, and cotangent. It even graphs these trig funtions also, and it does basically everything youll ever need for your precal class. The file is a group, and youll need to ungroup it after sending it to your calculator and then run the program called aaap to begin using the program. If you have any problems, send me an e-mail at daddyricecarolina. rr or an AOL instant message at MYNAMEISALLCAPS AP Calculus If youre taking Calculus or youre going to take Calculus, you will definitely need this program. It will save you lots of time and work that you will have to struggle with for about 30 minutes when this program does it in about 5 minutes. It will find Area Between Curves, Volume of Circular Revolution Around a Vertical Line and Around a Horizontal Line, Centroid, Arc Length, Surface Area of Revolution, Definite Integral of a function from A to B, Riemann Sums (Area Approximations - Left, Right, Midpoint, Trapezoid, and Simpsons Rules), Nth Derivative (based on power rule) Nth Antiderivative (based on power rule), and Root Approximation Methods (Newton, Bisection, and Secant Methods). It will do so much for you and it will really help you in Calculus. Now download this program onto your Calculator, and head on to Calculus and see how helpful it is Calculus Tools by Eric Parsons v1.3 Forget how to integrate or derive a trig function Hate calculating area with the trapezoidal method by hand Do you wish you had a program to make math a little easier. This program has 7 different programs including the Laws of cosine and sine and other to help you shave your pre-calc and calculus tedious work in half. Please download it and check it out, be sure to read the readme file before you use it for helpful information on how to use some of the options. Calculus 1 and 2 Pack v1.2 Included programs: algebrageometrytrigonometry formulas, ram graphs, maclaurin series, volume and rotation of a solid, ramtrapezoid, test for convergence, projectile motion, table of domainrangederivativesintegrals of 12 trig functions and 4 other logexpo functions, exact valueinfinite domain of trig functions, Eulers method, improved Eulers method, Runge-Kuttas Method, Newtons method, slope field, and partial sums of a recursive series. Simpsons Rule Allows you to input the beginning and end of the interval (a for the start, b for the end) and the number of subdivisions (n). When you input the equation, you must be sure to put it in parantheses, otherwise it wont work. مثلا to input 3x, type this: 3x and hit enter. it will show you the programs progress. be warned, the more subdivisions you use, the more time it will take. approx. times are. n 50, time 30 sec, n 100, time 70 sec, n 150, time 130 sec (time in seconds .003(n2) .35n 5)Questions on Algebra: Quadratic Equation answered by real tutors Tutors Answer Your Questions about Quadratic Equations (FREE) Question 1070523. Find the solution set of the equation x y 7 and 3x 2y 59 thank you Answer by Alan3354(55536) You can put this solution on YOUR website x y 7 -- y 7-x and 3x 2y 59 Sub for y 3x2 2(7-x)2 59 5x2 - 28x 39 0 Solve for x then solve for y Question 1070483. write the equation in both vertex form and standard form for a parabola that has a vertex of (-3,-2) and passes through 1,0) Answer by josgarithmetic(20414) (Show Source ): You can put this solution on YOUR website Read the coordinates directly from the standard form equation given. You can put this solution on YOUR website Read the coordinates of the vertex from the standard form equation given. Question 1070156. If 4xsquared - 100 0 what are the roots of the equation Found 2 solutions by MathTherapy, Fombitz . Answer by MathTherapy(6396) You can put this solution on YOUR website If 4xsquared - 100 0 what are the roots of the equation Question 1069135. It takes Kenny 1 hour longer than Dennis to shuck a sack of oysters. IF together they shuck a sack of oysters in 45 minutes, then how long would it take each one working alone Answer by ankordixie-net(20169) You can put this solution on YOUR website It takes Kenny 1 hour longer than Dennis to shuck a sack of oysters. IF together they shuck a sack of oysters in 45 minutes, then how long would it take each one working alone : change 45 min to .75 hrs : let t time (in hrs) for Dennis to shuck a sack of oysters then (t1) time required by Kenny : Let the completed job 1 (a sack of shucked oysters) 1 multiply by t(t1), cancel the denominators .75(t1) .75t t(t1) .75t .75 .75t t2 t 1.5t .75 t2 t 0 t2 t - 1.5t - .75 a quadratic equation t2 - .5t - .75 0 using the quadratic formula a1 b-.5 c-.75, I got t -.65 (not a solution) and t 1.15 hrs is Denniss time alone (thats: 1 .15(60) 1 hr 9 min) then 2.15 hrs is Kennys time Question 1068986. The area of a rectangle can be found using the formula 119860 119897119908. The area of the rectangle is 364 square centimeters and can also be represented by the expression 1001198922 225119892 8722 486. If the width is greater than the length, find the value of g as it relates to this rectangle, the numerical value of the length, and the numerical va lue of the width. Found 2 solutions by MathTherapy, josgarithmetic . Answer by MathTherapy(6396) You can put this solution on YOUR website The area of a rectangle can be found using the formula 119860 119897119908. The area of the rectangle is 364 square centimeters and can also be represented by the expression 1001198922 225119892 8722 486. If the width is greater than the length, find the value of g as it relates to this rectangle, the numerical value of the length, and the numerical value of the width. Question 1068985. Solve for z: 101199112 18119911 8722 7 161199112 48119911 8722 12. Round your solutions to the nearest thousandth. Question 1068984. In the equation , I know empirically that x y when either of them has the value , but I dont know how to prove it algebraically. ANY help greatly appreciated Answer by ikleyn(11142) You can put this solution on YOUR website . To prove it algebraically, simply SUBSTITUTE y into the right side. Then simplify and check. Question 1068987. One of the roots to the quadratic equation 301199092 8722 149 119896 is 112. Find the value of k and the other root to this equation. Answer by ikleyn(11142) You can put this solution on YOUR website . There are TWO WAYS to solve it. Question 1068988. The area of a triangle can be found by using the formula 119860 12 1198878462. The area of the triangle can be represented by the expression 872217.51199092 8722 138.5119909 8722 27. The triangles base length is greater than its height. If the area of the triangle is 231 square inches, find the value of x as it relates to this rectangle, the numerical length of the base, and the numerical length of the height. Found 2 solutions by ikleyn, rothauserc . Answer by ikleyn(11142) You can put this solution on YOUR website . 1. In the condition, the notions triangle and rectangle are missed. 2. Finding x is not related (and is not relevant) to finding the base length and the height length. 3. There are INFINITELY MANY other solutions, different from integers. The Diagnosis . This problem is NONSENSE in degree 3. Question 1068842. How many and what type of solutions does the equation have 5y218y87224 two nonreal solutions two rational solutions two irrational solutions one rational solution Answer by Alan3354(55536) You can put this solution on YOUR website How many and what type of solutions does the equation have 5y218y - 4 5y2 - 18y 4 0 --- Discriminant b2 - 4ac --- Disc 2 complex solutions (non-real) Youre confusing real and rational, I think. Verify the entry. Question 1068827. a child care center has 200 feet of fencing to enclose two adjacent rectangular safe play areas (with one fencing in the adjacent side) a)write total area of the play areas as a function of x b)write the area function in standard form to find algebraically the dimensions that will produce the maximum enclosed area. please help with my question thank you Answer by josmiceli(16328) You can put this solution on YOUR website Let width ( 3 equal sizes ) Let length ( 2 equal sizes ) --------------------------- (a) Let the total area ---------------------------- (b) This is a parabola with a maximum due to the minus sign. The W-value of the function maximum is: and ---------------------------- The lengths that give the maximum area are: ----------------- check: and ( note that you can replace with and with , and that will give the way they want. ) Heres the plot of Question 1068812. The hire purchase price of a refridgerator is R6500. the deposit of R500 is made and the remainder is paid in equal monthly payments of R250. what is the interest rate ( simple interest ) charged on this transaction Answer by KMST(4490) You can put this solution on YOUR website It depends on how many payments of are required. The number of payments required should be stated as part of the question. If you have to make only such payments, the amount paid in those such payments adds up to , and since that plus the deposit equals the full price, , the interest rate would be . If you have to make such payments, the amount paid in those such payments adds up to . After the deposit, there was a debt of . If . That amounts to of the amount financed. With that paid over , The simple interest would be . months and since that plus the deposit equals the full price, , the interest rate would be . If you want to write a formula, you could write , where interest paid, amount financed, time in years, and interest rate as a decimal, for example for . Then, for , with for monthly payments, you would write . and solve to get . (for interest rate. Question 1068750. Without solving the given equation, find an equation whose roots are the squares of the roots of x2 4x 2 0. Found 2 solutions by ikleyn, josgarithmetic . Answer by ikleyn(11142) You can put this solution on YOUR website . Without solving the given equation, find an equation whose roots are the squares of the roots of x2 4x 2 0. The trick and the focus is to find the second equation without solving the first. In this sense the solution by josgarithmetic is out of the target. I will show you how to strike EXACTLY to the target. To make the equation whose roots are the squares of each of those, the new roots would be and . THe equation starts as . Then one more small step. This file is in your computer, not on a server. Answer by Fombitz(29151) You can put this solution on YOUR website Your link is a local link (or has lost its host computer information). You need to have a global link accessible to others. Check the value of the functio n when . Thatll narrow down the choices. Im assuming its going to be -28 so itll be between the last two. Choose another value, say , calculate the values, match it to the graph, and then youll know which one it is. Question 1068571. A motorist drives 146km at a certain average speed she then increases the speed by 9kmh and takes the same time to travel the next 164km. find her speeds for both parts of the journey. pls help. Found 2 solutions by MathTherapy, stanbon . Answer by MathTherapy(6396) You can put this solution on YOUR website A motorist drives 146km at a certain average speed she then increases the speed by 9kmh and takes the same time to travel the next 164km. find her speeds for both parts of the journey. pls help. You can put this solution on YOUR website A motorist drives 146km at a certain average speed she then increases the speed by 9kmh and takes the same time to travel the next 164km. find her speeds for both parts of the journey. pls help. ------------------- Slower speed DATA: dist 146 km rate r kmhr time dr 146r hr ------------ Faster speed DATA: dist 164 km rate r9 kmhr time 164(r9) hr ------------ Equation: time time 146r 164(r9) ----- 146r 1469 164r -------- 18r 1469 r 0.90 kmhr (slower rate) r9 9.9 kmhr (faster rate) ------------ Cheers, Stan H. -----------
No comments:
Post a Comment